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MULTICRITERIA EVALUATION OF LOT SIZING TECHNIQUES
AS A FUNCTION OF DEMAND PATTERN, TIME BETWEEN

ORDERS, AND DEMAND VARIABILITY

By Bryan S. Cline, Bobbie L. Foote, and Robert E. Schlegel

INTRODUCTION

The motivation for this research was the observation of procurement systems at military logistics
agencies. The inven."ry ordering systems at these facilities are automated and long years of experience
with these systems are available. The data result in patterns of forecasting error which sometimes favor
one logistics approach over another. Level demand sets ;n which the mean is constant cause no problems
for (R, Q) models with exponential smoothing as the forecasting approach. However, if the demand
pattern exhibits trends or has many level changes, forecasting is difficult and the fluctuations in R and Q
that arise are very expensive. In the latter case, buying 9 or 12 months demand plus a buffer stock based
on a forecast at a given time of the year may be much more effective in terms of both service level and
inventory cost. Thus, a change in logistics approach is dictated by the demand pattern forecasting
difficulty (Foote, Kebriaei and Kuman, 1988).

The criteria used in inventory procurement is also important in reducing the harmful effects of
demand variance. For example, if shortages are recognized explicitely by modeling shortage costs,
changes in demand variance have a big impact on order quantity. If shortage is modeled by service level
constraints, changes in variance have a big impact on triggering an order. Different lot sizing techniques
will give different order quantities when the same forecast is used. Liberal lot sizing techniques that
"over order" will protect against shortages while conservative techniques will reduce or eliminate holding
costs.

It is also known that lot sizing tends to perform worse in practice than in simulated tests. The
reason for this is that actual demand patterns change over time from constant at a particular level, to
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trending, ,, cosLaIt at a new level. A change to trending in the data triggers a false estimate of the
variance when techniques such as exponential smoothing are used. Based on observations of actual
demand pattern changes, a study was conducted to investigate the interaction of (I) lot sizing approach.
(2) ratio ot holding cost to setup cost (defining time between orders or "1110"), (3) an implied shollage
cost model criterion, and (4) the demand pattern based on actual demands obtained from a large national
distribution company and a vendor for fast food chains. The selection of the forecasting techniques, lot
sizing approaches, and cost factors was based on an extensive survey by (line (1989).

FORECASTING TECHNIQUE

As discussed above, the accuracy of various forecasting techniques in ternis of estimating
demand variance, recognizing trending, and consistently estimating the mean is important in reducing
inventory costs. Barron and Targett (1985), Flores and Whybark (1986), and Amar and Gupta (l") all
point out that forecasting methods perform differently ci simulated data compared with empirical data.
Based on the results of a forecasting competition, Makridakis et al. (1982) established the following
principles for selecting a forecasting technique: (1) knowledge of the underlying demand pattern helps
identify the best technique, (2) simple models work well, and (3) the average of the forecasts from simple
models is superior to the forecast from a single model.

From the literature, exponential smoothing is more powerful compared with a large number of
alternative approaches and is widely used as a baseline technique (Silver and Peterson, 1985). If trending
in the data occurs, Holt's exponential smoothing model may be used to prevent the forecasting technique
from becoming disadvantageous (Ibid.). Based on industrial short course projects conducted from 1987
to 1989, we used the idea of tracking the mean absolute deviation (MAD) and bias of a set of
exponentially smoothed forecasts and selecting the best forecast for the next planning horizon. Silver and
Peterson (1985) argue, however, that changing the smoothing constants (what they refer to as "adaptive"
smoothing), while having considerable intuitive appeal, is "not necessarily better than regular, non-
adaptive smoothing." (e.g., Ekern, 1981; Flowers, 1980; Gardner and Dannenbring, 1980). Specifically,
Silver and Peterson feel the resulting forecasts would be excessively "nervous". However, it is our
contention that if a forecast model is set, this effect does not occur. We also believe the lot sizing
problem studied here only requires the use of an extended forecast approximately once every "T11O"
period.

Since we used automated forecasting, the best model for the current data could not be easily
determined. Thus, only the average of exponential models with varying parameters or "focus
forecasting" which selects a parameter set for Holt's model based on MAI) and bias could be used.

During program tests on samples of empirical data, the focus forecasting approach performed
better than averaging techniques in terms of less deviation and bias although the difference was not
statistically significant. Comparisons of the MAD for the focus procedure with the MADs for each
individual, static procedure were quite favorable. Focus forecasting was selected for this study since it
was intuitively more appealing and its history in terms of student forecasting competitions reflected great
success. Rather than use a single model with changing parameters based on error, we used several
models with different fixed parameter sets. When a new, extended forecast was needed, the model which
had the best forecast history up to that point was chosen.

LOT SIZING TECHNIQUES

The following lot sizing techniques were compared: Wagner-Whitin (W-W), Fisenhut (Part
Period Balancing or PPB), Silver-Meal, EOQ, and Tsado. The W-W approach (Silver and Peterson,
1985) has the advantage of claiming optimality over the time horizon for deterministic demand but
requires zero demand after the last period (after the time horizon). Actual demand does not satisfy either
assumption; however, Wemmerlov and Whybark (1984) indicate the W-W approach is one of the best
procedures when simulated forecast errors are introduced.

Eisenhut part period balancing and EOQ do well in many cases when stochastic demand is
introduced (Callarman and Hamrin, 1979). Silver-Meal (S-M) has performed well in some studies with
forecast errors (De Bodt and Van Wassenhove, 1981) and poorly in others (Callarmnan and tlamrin,
1979). Using actual demand data with simulated error, the EOQ, S-M, PPB, and least cost lot sizing
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methods adjusted to integral periods of demand were indistinguishable (DL Bodt and Van Wassenhovc,
1983).

Tsado (1985a, b) developed a heuristic specifically to deal with stochastic demand and tested the
method on historical data. Tsado used the entire demand history to produce the forecast and then
computed lot sizes based on several approaches. Htis method appeared to work well compared with the
W-W, EOQ, PPB, and De Bodt's modified Silver-Meal Unfortunately, industry iohiIaaiiy ias, only a
limited demand history. As a result, Tsado's methodology cannot be typically used.

Wemmerlov (1989) analyzed the effect of data variance on the perfonnance of 14 lot sizing
methods using simulated data. ie found that, without forecast errors, W-W was best, followed by Groff's
rule and S-M. With errors, Eisenhut PPB was best, followed by two of Wemmerlov's rules. -)Q uid
W-W were in the top six.

PERFORMANCE CRITERIA

Cost Structure

Our experience with industry and U.S. government agencies shows that few companies or
logistics bases are comfortable with setting values on shortage or order costs. In the government, service
levels are preferred as a criterion. The ratio per unit of setup cost to holding cost is then the key variable.
In this study, these values were based on the mean demand per period as in Berry (1972), Callarman and
Hamrin (1979), and Wemmerlov and Whybark (1984). They were established by setting the time
between orders (the TBO in number of periods of demand) at 2, 4, 6, 8, and 10. Using the mean demand
per period, the a/h (setup to holding) ratio which would make each corresponding TBO optimal was
determined and incorporated in each model. These values also correspond to our experience with
industrial concerns.

Several measures may be applied to evaluate the performance of lot sizing approaches relative to
service level. These measures include the number of stockouts and the shortages as a percentage ot
demand for the short period. In addition, a relative cost measure was obtained by comparing standard
inventory cost for the algorithm with the cost determined by the optimal Wagner-Whitin algorithm.

Relative Cost

Previous studies have used the Wagner-Whitin heuristic as the baseline for cost comparisons.
Unfortunately, the W-W procedure is suboptimal in the case of a rolling horizon and probabilistic
demand. Arguments for the use of the Wagner-Whitin heuristic as the baseline are:

1. Wagner-Whitin is the baseline in the deterministic case.
2. It is not known before hand which rule will outperform the others.
3. Use of the Wagner-Whitin heuristic provides an easy comparison to previous work.

We feel these reasons do not justify the use of a single heuristic as a basis of comparison. It is
true that we do not know what the optimal inventory cost of a probabilistic lot size problem will be until
the demands have already been satisfied, i.e., we do not know what our future demands will be.
However, by comparing the cost obtained through the use of a heuristic (when demand is considered
stochastic) with the optimal cost obtained by Wagner-Whitin over the entire demand "history" (when
considered deterministic), we obtain a true, fixed reference for comparision.

The key to this fixed reference is in the interpretation of the cost comparison. Specifically, the )r
difference in cost between the optimal and the huenistic may be thought of as the maximum amount of
money we would be willing to pay for perfect knowledge of our future demand (referred to as the
expected value of perfect information or EVPI). (See Raiffa, 1968.)

Number of Stockouts

Wemmerlov and Whybark (1984), Tsado (1985a), and other:.; azhitrarily set service levels in
order to handle the question of stockouts. By service level, we mean there exists enough safety stock to
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assure demands are met a specified percentage of the time. Generally, !eves between 90 and 99.999
percent are chosen. As a result, the stockout question is largely ignored.

Since we assume that stockouts have a "variable" cost (i.e., the cost of a stockout to one
organization may be quite less than that perceived by another), setting an arbitrary service level may not
be appropriate. Furthcr, by pre-determining a service level, the effects of a lot size algorithm on
inventory (holding ana setup) costs and stockout costs may be confounded by the Fsafety stock issue.

In a manner similar to that employed by Bookbinder and l'ng (1986), we chose to "count" tie
number of times a lot size heuristic produced a stockout. Obviously, this number will vary according to
TBO level. Therefore, we chose to compute the stockout "cost" as the number of times a stockout
occurred expressed as a percentage of the number of replenishments made. For example, given a 52-
period demand "history" with a TB') level of 2, 5 stockouts out of 26 replenishments (approximately)
would yield a stockout "cost" of 0.1923, i.e., about 19.23% of the replenishments made would experience
a stockout. For a TBO of 6 periods, 5 stockouts would imply a "cost" of 57.69%.

Percentage Short per Stockrnt

Another factor in the stockout question is the amount of shortage when a stockout occurs. The
average shortage per stockout is therefore an important "cost" consideration. I lowever, an average
shortage of N units does not provide a significant amount of information. There are two ways of
handling this problem. One is to express the shortage as a percentage of average demand. Another
approach is to express the shortage as a percentage of the actual demand for the period in which a
shortage occurred. We chose the latter. Justification for our selection follows.

Consider an average demand of 500 units. If we forecast a demand of 550 units where the actual
demand is 600 units, then our percentage short is only 8.3% of actual demand. If we had used average
demand, we would have shown a shortage of 10%. Now assume an average demand of 50 units, a
forecasted demand of 100 units ,and an actual demand of 150 units. We show a shortage of 33.3'( of
actual demand rather than a misleading 100% of average demand. In both cases, the forecast was 50
units greater than the average demand, and the actual demand was 50 units greater than the forecasted
demand. Obviously, shortage "cost" expressed as a percentage of actual demand is a more accurate
estimate of the true "cost" associated with a shortage.

PROCEDURE

Assumptions

The assumptions used to develop the single-stage, production lot size problem are similar to
those employed by other researchers and are as follows:

1. Demand is probabilistic and is forecast using a limited amount of prior
history.

2. A fixed cost is incurred for each setup.
3. The inventory holding cobt is a function of th- amount of inventory on hand at

the end of a given period.
4. Productitn lead time is zero (i.e., we have enough inventory at the end of a

production period to meet that period's demand).
5. All demands are met at the end of each period (i.e.,the order for tie next

period will cover shortages for tie current period.
6. There is no safety stock except that which is inherent to a particular lot size

heuristic.
7. Back orders are allowed.
8. There is no monetary penalty for shortages in the cost calculations (i.e.,

shortages are handled as a separate criterion.
9. Demand for the next perioi ,s mu kitown with certainty.
10. An updated forecast is available for any period.
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General Procedure

Research on lot size procedures has been performed by Silver (1978), Askin (1981), ilookbindcr
and H'ng (1986), and Bookbinder and Tan (1988). Our procedure (Figure 1), while developed prior to
our knowledge of the previous works, is similar to that suggested by Bookbinder and Tan as follows:

1. Use a focus forecast from simple exponential smoothing and exponential
smoothing with trend models for demands over the rolling horizon.

2. Treat the forecast demand as deterministic and employ a specific lot size
heuristic.

3. If on-hand inventory is positive, the production quantity will be the amount
obtained from the lot size heuristic minus the on-hand inventory.

4. If on-hand inventory is negative (i.e., a stockout has occurred), the production
quantity will be the amount obtained from the lot size heuristic plus the
amount backordered.

5. For each period, compare the on-hand inventory to the forecast for the next
period. If the forecast exceeds the inventory position, schedule a setup for
the next period, otherwise continue.

6. When the next period's demand is realized, demand is met or a shortage
occurs. If short, schedule a setup for the next period, otherwise look at the
next period's forecast (Step 5).

7. Develop an extended forecast only when a setup is cheduled
8. Continue this procedure until all available demand data is exhausted.
9. Discount the inventory holding cost for all on-hand inventory used to stisfy

demand beyond the last period in the data set.

I I
Inw -D(t) StopiDeandIrp*l D[a Set TRC -TRC + Hoiding History is Exhausted

Ccrpe OPNTWol de-stOe
aMl Iitial Forecast Rolling Hozon Ircr Forecast by Short

(Select &) CMVXre o rstN hr t n
LotIm ze(S t ) Coun

TRC -TRC + SetR " R Hl

igure !. Fow Chart of General Procedure

Although this study used actual demand data rather than a simulation, computer soiftware was
developed to generate the forecasts, compute production policies via the various lot size heuristics (and
the ~ptimal Wagner-Whitin cost), and to compute the criterion measures associated with each technique.The forecasting procedure and the lot size procedures were programmed in MJCROSOl" QuickiASiC
and run on an IBM XT comparahle microcomputer.
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Forecast Proedurt:

The complete forecast was generated over the entire demainld history od each data ',i o i

rolling horizon basis) prior to implementation of any lot sue pr(ocedure I MllstiaS 0f ICvcl i J1iid Mlid

trends (when Holt's exponential smoothing model was used) were stored in ine0n1v Altliough thic

forecast for each period was used in the lot size procedure, Zxtendc .kreca,,ts ,,were ,,ly d(Eopcd v,

required by the particular lot size heuristic employed. To provide a compact computer algorithm, tle

simple exponential smoothing procedure was incorporated into I lolt's procedure by setting the trend

parameter, g, equal to zero.
"Focusing", i.e., selecting the "best" forecast model, was carried out by keeping track ()t the

mean absolute deviation and the smoothed error tracking signal (bias) for each individual or ,inlgC

forecast. ;stimates of the MAD were also exponentially smoothed. The forecast with the be,,t currenlt

MAD was selected for the focused model if the bias was within acceptable limits, spccificaiiy beieci -

0.8 and 0.3.
Silver and Peterson (1985) argue that a negatively biased forecast (where lorcca.t c,ccd, til;

demand) is preferable to a positively biased forecast (where demand exceeds the torecast) since being a

few items overstocked is preferable to consistenliy being short (causing to nly premnature setups)

Wemmerlov and Whybark (1984) specifically avoid the use of biased forecasts by adjuting the acragc

actual demand per period to equal the average forecasted demand per penod. While casily done tor

simulated demand data, this is generally not appropriate for empirical demand forecasted on a rolling

horizon basis. Research by Lec, Adam. and lbert (1987) shows that "bias is the only measure that

satisfactorily reflects inventory carrying costs.. (and) only bias displays any reasoaable association with

the shortage cost and shortage units..."
Since carrying cost is caused by over forecasting (what Silver and Peterson (1985) relerred to as

positive bias) ".1 shortage costs are caused by under foreLtasting (negative bias), the use of an unbiaised

forecast (as used by Wemnerlov and Whybark. 1984) might seem reasonable. The research by lcc ct al

(1987), however, shows that "the structures of these two component costs may not bc symmetrical about

the zero bias level." I infortunateiy, they do not provide guidelines as to what the nominal bias levels

may be.
The specific bias levels used in our forecast model were deternined in conjunction with an

outier dis4,,jting criterion. Outliers were discounted by keeping track of the average demand and

standard deviation of the series at each point in the forecast "cycle". If an outlier excce',--! 4 standard

deviations, the actual demand was reduced to the mean plus 4 standard deviations for forecast purposes.

This provided a stabilizing influence on the forecast which otherwise would have beei provided by

human intcr- ,nton. On the downside, the ,,;recast model would lag slightly behind a true shift in the

mean of the demand series. This type of lag, however, is a standard "penalty" for exponctially

smoothed forecast procedures.

1000

800
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400

200

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

lFigure 2. Fv'ample off Level Demand Pattern

As an example, the data set in Figure 2 exhibited a steep downward trend in the forecast miodel

due to large upward spikes (outliers) relatively early in the demand series. The steep downward trend
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was leveled somewhat by discounting the outliers and then varying the bias criteria in an ellort to

eliminate a large series of zero forecasts causedI by the apparant trend

EVAIUATION METHOI)OI)GY

Demand Data Sets

Of 500 original sets of demand data that were obtained from a national product distrihutiol
company, 207 were usable in that no zeros or alphabetic characters appeared as the monthly dcmnand
The demand was based on 52 weekly periods and was clasifed by difficulty of forecasting and bh
variability as measured by the coefficient of variation (CV). Demand patterns were classified as easv to
forecast (level demand, trending, or gradual change to trending) or difficult to forecast (abrupt challt, ,r

continuous up and down trending).

Table I
Classification of Demand Data Sewts

Pattern/CV 0 < CV < .5 .5< CV< I CV > I

ILinear 12 6 5
Non-linear 8 5 0

The categories for ('V were low (0 < CV < .5), medium (.5 < ('V 1.0) and high (('V > 1.0)
These ranges have been observed frequently in several organizations. Table I shows the classification of
demand patterns and the breakout of 36 data sets (Group 1) chosen randomly from the 207 usable data
sets. Figures 2 (previous page), 3 and 4 are examples of Group I data.

35 M l l

30
25
20m

15

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Figure 3. Example of Linear Trending Demand Pattern
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0 1 1 - - -k. . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

Figure 4. Example of Nonlinear Demand Pattern
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Five other demand data sets from another company were also used. These data ets ((;roup 2)
spanned 78 months but were not classified as to trending or variahility. All data sets are available n
Cline (1989).

Experimental Design

For the Group I data sets, a 5 x 5 x 2 x 3 (lot sizing technique x TB() x data set type x
variability class) experimental design was used with repeated measures on the first two factors. Lo t
sizing technique (Fisenhut, EOQ, Silver-Meal, Tsado, and W-W Heuristic) and TBO (2, 4, 6, 8, and 10)
were the primary factors of interest. Data set type (easy vs. difficult to forecast) and varibility class (low.
medium, and high) served as stratification variables. For the Group 2 data sets, only lot si/ing tcchnique
and TBO were included in the analysis. Due to the fewer number of (roup 2 data sets, stratilicatiot wa\
not feasible.

Each demand data set served as input to each of the five lot sizing techniques for each of the fic
TBO levels. Values for the three pIrformaie measures (inventory cost relative to the optimal W-W,
stockouts as a percentage of replenishments, and shortage as a percentage of actual demand) were thu,
collected on 900 runs (36 data sets x 5 lot sizing techniques x 5 T1O levels).

RESULTS

Group I Data

The results collapsed across the 36 Group 1 data sets are summarized in Table 2 for the relative
inventory cost, percentage of stockouts, and percentage short.

Table 2
Inventory Costs, Stockouts, and Shortages vs. Lot Sizing Tecienique and TI()

Technique/TB O 2 4 6 8 10 Average
ICSO %S ICSO %S ICSO %S ICSO %S ICSO %S ICSO %S

Eisenhut 38.4 11627.6 29.6 12.7 23.1 36.9 14.1 17.7 46.0 15.2 18.3 747 16.4 309 451140 21

EOQ 45.1 8.2 21.6 29.2 16.728.5 23.622.7 26.6 22.326.0 31.6 18.1 34.2 37.6 27721 5 292

Silver-M eal 41.6 11.7 25.7 25.7 18.4 32.5 24.5 18.7 23.6 27,921.3 21.4 27.0 29.3 31 6 294 199 27'0

Tsado 39.610.928.2 23.1 21.029.3 19.726.2 32.4 18.4 29.9 31.8 16.3 34.942.4 23.4 246328

W -W fleur 41.0 9.1 24.0 32.5 14.424.6 43.3 11.5 20.8 111.3 5.7 17.3 323,5 0.5 7.5 110.3 8 1$IS

Averages 41.1 10.3 25.4 28.0 16.6 27.6 29.6 18.6 24.2 45.2 19.6 24.1 91.9 21.) 30.0

IC - inventory cost relative to Wagner-Whitin
SO - stockouts as a percentage of replenishments
%S - shortage as a percentage of actual demand

As illustrated by Figures 5, 6 and 7 (next page), the various lot sizing techniques performed
differently with respect to standard inventory cost (holding and setup) than they did with respect to
shortage related measures. In terms of inventory costs (Figure 5), the EOQ, S-M and l'sado algorithm,
performed significantly better than the Eisenhut and W-W heuristics. Although a Tukey test with an
alpha level of 0.05 demonstrated statistical significance, the difference was of practical importance only
when the TBO was !arge (8 or 10 periods).
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tho 2 tbo 4 tbO6 tbo 8 'bo 10 W. er

Figure S. Relative Inventory Cost as a Function of Lot Sizing Technique and TBO

Conversely, Figures 6 and 7 show the Eisenhut and W-W heuri' tics resulted in significantly
fewer shortages and a lower percentage of items short per stockout than the other three algorithms. Thie
variability in the number of stockouts (in terms of percentage of replenishments) across the different
levels of TBO was smallest for the Eisenhut PPB technique with means ranging from 12% to 18%. The
W-W heuristic, while slightly less stable than the Eisenhut algorithm, was statistically the best overall
performer for number of shortages (with an alpha level of 0.01). Variability in percent short across the
TBO's was essentially the same for all five algorithms.
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Figure . % Shcots as a Function of Lot Sizing Technique and TBO
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whereas the other algorithms tend to "run lean". Additional inventory increases the inventory holding
costs but reduces the number of stockouts due to beinZ a few items short.

Whether the demand pattern was easy or difficult to forecast did not significantly affcct citlier
the inventory costs or the number of sliortages. I)wcver. dilliclll demand dat;i did reti'lIl ill ;I
significantly smaller percentage short per slockout due to "over lorecasting" by the Immcar loreca.i iodcl.

The level ,f variability in the data set (as indicated by the coefficient of variation) wits a
significant factor in that all three variability classes differed significantly on all criterion measures (with
lower costs typically associated with lower variability as would be expected). The difference did not
hold for a TBO of 2 where the inventory costs averaged 41.3, 41.7, and 39.0 for the low, medium, and
high variability classes, respectively. At high variability for a TBO of 2, there tended to be stockouts
which lowered holding costs.

Inventory cost performance as a function of TBO tended to validate the "rule of thumb"
advocated by Wemmerlov and Whybark (1984) which states that the length of the rolling horizon should
be approximately three times the average time between orders. A TBO of 4 provided the lowest
inventory cost using a rolling horizon of 12 periods. However, performance as measured by the number
of stockouts and amounts short per stockout did not support this recommendation. Wemmerlov and
Whybark also advocate a rolling horizon of at least five times the average time between orde.. for the
Wagner-Whitin heuristic since it uses the entire length of the rolling horizon to make its initial
production decision. Recall, in the Wemmerlov study, that service levels were held constant for all
factors.

Group 2 Data

With only five data sets, the simplified analysis examined only lot sizing techniique and TBO
level. The results paralleled those for the Group I data. Lot sizing technique and TBO were significant
factors. The same techniques performed better for the same respective criteria, however, with fewer data
sets, the level of significance was smaller. Additionaly. these data sets had long periods of level demand
which also tended to obscure differences in the techniques.

Validation

Since the random sample was not balanced (i.e. non-equal replications in all cells), additional
samples were drawn so that an equal number of data sets (n = 5) occurred in each cell. Interaction effects
could then be more appropriately analyzed.

The results not only paralleled the previous study, they were much stronger and the conclusions
they supported were more clearly delineated. The balanced design allowed an interaction analysis that
supported an interpretation for practical application as follows:

1. The level of forecasting difficulty does not affect the choice of algorithm if
focus forecasting is used.

2. The selected criterion does affect the choice of algorithm. Although not
statistically different, the order of performance based on the selected criterion
is given in Table 3.

3. Increasing the TBO magnifies the difference between the algorithms, i.e., at
large TBO levels (8 and 10), the first -ranked algorithm is statistically superior.

Table 3
Top Performing Algorithms By Performance Criterion

Criterion Best Better Good
Cost: Tsado Eisenhut PPII Silver-Meal
% Short: W-W Heuristic Fisenhut PPB
% Stockouts: W-W Heuristic
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SUMMARY

Wemmerlov (1989) states that "lot sizing research is not dead". Our results indicate this is true
There is much to be gained by selecting the ight lot sizing technique based on the desired criterion. II
minimizing shortages is the criterion of choice, Eisenhut Part Period Balance or the Wagner-Whitin
heuristic is clearly best. Otherwise, EOQ, Silver-Meal or Tsado are equally good choices. The big gap
in research is testing lot sizing techniques using empirical demand data when resource constraints are
present. Therefore, further research in this direction is warranted.
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